Phosphate Testing

Methods
Phosphorus occurs naturally in rock formations in the earth's crust, usually as phosphate. High phosphate concentrations in surface waters may indicate fertilizer runoff, domestic waste discharge, or the presence of industrial effluents or detergents. Although phosphates from these sources are usually poly-phosphates or organically bound, all will degrade to ortho or reactive phosphates with time.
Phosphate measurement is used to control scale and corrosion inhibitor levels in boilers and cooling towers. Both methods described below measure reactive phosphate, which will give a positive reaction prior to hydrolysis, and is usually termed ortho-phosphate.
The Vanadomolybdophosphoric Acid Method
References: ASTM D 515-82, Phosphorous in Water, Test Method C. APHA Standard Methods, 22nd ed., Method 4500-P C-1999.
In test kits employing the vanadomolybdophosphoric acid method, phosphate reacts with ammonium molybdate under acid conditions and in the presence of vanadium to form a yellow-colored product. Results are expressed as ppm (mg/L) PO4.
The Stannous Chloride Method
References: APHA Standard Methods, 22nd ed., Method 4500-P D-1999.
Test kits employing this chemistry utilize a stannous chloride reduction. Phosphate reacts with ammonium molybdate and is then reduced by stannous chloride to form a blue complex. Results are expressed as ppm (mg/L) PO4.
Phosphate CHEMets Visual Kit
Item No. | Description | |
---|---|---|
K8510 | Phosphate, ortho (reactive) CHEMets Kit 0-1&1-10ppm Ea | |
Phosphate Vacu-vials Instrumental Kit
Item No. | Description | |
---|---|---|
K8513 | Phosphate,ortho(reactive) Vacu-vials Kit 0-5.0 ppm, Ea | |
Refills for Phosphate CHEMets Kit
Item No. | Description | |
---|---|---|
R8510 | Phosphate CHEMets Refill 0-1 & 1-10 ppm, Ea | |